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Abstract
The neurovascular unit (NVU) comprises multiple types of brain cells, including brain endothelial
cells, astrocytes, pericytes, neurons, microglia, and oligodendrocytes. Each cell type contributes to
the maintenance of the molecular transport barrier and brain tissue homeostasis. Several disorders
and diseases of the central nervous system, including neuroinflammation, Alzheimer’s disease,
stroke, and multiple sclerosis, have been associated with dysfunction of the NVU. As a result, there
has been increased demand for the development of NVU in vitromodels. Here, we present a
three-dimensional (3D) immortalized human cell-based NVU model generated by organizing the
brain microvasculature in a collagen matrix embedded with six different types of cells that
comprise the NVU. By surrounding a perfusable brain endothelium with six types of
NVU-composing cells, we demonstrated a significant impact of the 3D co-culture on the
maturation of barrier function, which is supported by cytokines secreted from NVU-composing
cells. Furthermore, NVU-composing cells alleviated the inflammatory responses induced by
lipopolysaccharides. Our human cell-based NVU in vitromodel could enable elucidation of both
physiological and pathological mechanisms in the human brain and evaluation of safety and
efficacy in the context of high-content analysis during the process of drug development.

1. Introduction

Cerebral blood vessels have a distinct structure known
as the blood–brain barrier (BBB); the BBB is select-
ively permeable to molecules and inhibits the entry
of toxicmolecules into the brain [1–4]. Astrocytes and
pericytes (PCs) are known to support this unique bar-
rier function and interact with brain endothelial cells
(bECs) to maintain and control vascular integrity
under physiological and pathological conditions [2,
5–11]. There are several types of transport pathways

for molecules to pass across the BBB [12–15]. For
instance, essential nutrients for cell survival, such
as glucose and glutamine, are transported into the
brain through their specific transport systems, which
are controlled by neurons that are the most signific-
ant consumers of these nutrients, depending on their
metabolic cycle [16–18]. Additionally, when cerebral
blood vessels are disrupted, neurotoxic molecules in
the blood, including fibrinogen, thrombin, and other
enzymes and serum proteins, tend to deposit near
the damaged vessels and affect neuronal functions
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[19, 20]. As a result, the interaction between brain
blood vessels and neurons is critical to understand the
pathogenesis of neurodegenerative diseases and neur-
onal dysfunction [21–25].

From an outward view of brain blood vessels,
the neurovascular unit (NVU) lies at a hierarchically
high level. The NVU is composed of bECs, astrocytes,
PCs, neurons, microglia, and oligodendrocytes, all of
which contribute to vascular and neuronal functions
as outlined below [26–28] (figure 1(A)).

(a) Astrocytes and PCs are in direct contact with the
endothelial lining and enhance vascular integrity
[1, 5–8, 11, 29–31].

(b) Neurons, away from the BBB, form synapses that
transmit signals between neurons and synaptic-
ally interact with astrocytes [32–35].

(c) Microglia are the resident immune cells in the
brain and regulate immune responses [36, 37].

(d) Oligodendrocytes support neuronal metabolism
[38–40].

Although the roles of each cell type are reported,
the effects of their mutual interactions and the brain
microenvironment as a whole have not yet been thor-
oughly investigated. Therefore, in vitro models that
can recapitulate cellular functions, cell-to-cell inter-
actions, and the brainmicroenvironment at the tissue
scale are an emerging need [41, 42].

Animal models, while enabling reproduction of
the complexity of in vivo environments, are expens-
ive and are increasingly associated with critical eth-
ical issues. More importantly, genetic and phenotypic
differences between animal models and humans have
continuously been reported to increase failure and
cause poor predictability in drug screening, as well
as in pathological studies in clinical settings [43–45].
Conventional two-dimensional (2D) culture systems
such as Transwell® and well plates have the advantage
of simplicity for assessing cellular behaviors and drug
responses; however, these 2D tools show low levels
of barrier function primarily because of the limited
culture environment (i.e. cells cultured on 2D rigid
plates or membranes) [41, 46, 47]. Therefore, various
three-dimensional (3D) and pseudo-3D (i.e. combin-
ations of 2D and 3D settings) NVU in vitro models
have shown promising potential with regard to repro-
ducing the microphysiological environment in the
brain by mimicking the 3D architecture of both the
brain vasculature and ECM and employing human-
originated cells [28, 48–50]. However, the existing
NVU in vitro models are limited to co-culture with
up to three or four cell types, which do not include
perivascular, neuronal, or glial cells [46, 51]. In other
words, none of the existing in vitro models, to date,
have attempted to co-culture all seven aforemen-
tioned human-originated cell types to reconstruct the
NVU in vitro.

Here, we report a 3D human cell-based NVU
model established by co-culturing six types of
immortalized cells in a collagen matrix with embed-
ded brain microvasculature. By surrounding a per-
fusable brain endothelium with six types of NVU-
composing cells, we demonstrated a significant
impact of the 3D co-culture on the maturation of
the barrier function and regulation of an inflammat-
ory response to an exogenous stimulant. Cytokine
arrays revealed that the inflammatory response res-
ulted from cellular interactions between the multiple
types of NVU-composing cells at a 3D tissue scale.
Our human immortalized cell-based NVU in vitro
model could enable elucidation of both physiological
and pathological mechanisms in the human brain
and evaluation of safety and efficacy in the context
of high-content analysis during the process of drug
development.

2. Method

2.1. Fabrication of a microfluidic PDMS chip to
house all-in-hydrogel NVU
We used polydimethylsiloxane (PDMS; SYLGARD™
184 Silicone Elastomer; Dow Corning Inc.) as a hous-
ing material to surround cell-laden type I colla-
gen. The microfluidic PDMS chip for housing all-in-
hydrogel NVU consisted of three layers: (a) a middle
PDMS layer with a central rectangular through-hole
connected to three parallel cylindricalmicrochannels;
(b) a top PDMS layer plasma-bonded on the middle
layer as a lid to create a central chamber for the col-
lagen scaffold; and (c) a bottom glass slide that was
also plasma-bonded with the middle layer (figure
S1 (available online at stacks.iop.org/BF/13/035039/
mmedia)).

The PDMS base polymer was mixed thoroughly
with a curing agent at a weight ratio of 10:1. After
degassing in a vacuum chamber to remove micro-
bubbles in the PDMS mixture, it was poured onto
a duralumin master in which three stainless steel
microneedles (outer diameter: 235 µm; DASAN Cut)
were pre-inserted, for the fabrication of the middle
layer. After crosslinking in an oven at 80 ◦C for at
least 3 h, the needles were removed and the PDMS
layer were gently separated from the mold. This layer
was punched into a rectangular shape (4 × 10 mm)
and then bonded to an unpatterned 1 mm thick
PDMS layer with oxygen plasma (FEMTO Science).
We next used biopsy punches (Miltex) to create six
in- and outlet reservoirs (8 mm in diameter) and
two collagen injection ports (1 mm in diameter).
The three microneedles were inserted through the
PDMS microchannels again and bonded to a glass
slide (50 × 70 × 0.15 mm; Matsunami) by oxygen
plasma treatment. The fabrication process is illus-
trated in figure S1. To attach the collagen matrix onto
the PDMS chamber, we coated the chamber sequen-
tially with 1% (v/v) polyethyleneimine for 30 min
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Figure 1. Engineering of all-in-hydrogel in vitro human NVU on a chip. (A) Schematic illustration of the NVU structure.
(B) Photograph of the all-in-hydrogel NVU model encased within a microfluidic polydimethylsiloxane (PDMS) chip. A
rectangular chamber contains a three-dimensional (3D) collagen scaffold co-cultured with seven types of cells. Six reservoirs are
created to supply cell culture media through three channels (235 µm in diameter). Scale bar: 10 mm. (C) Schematic illustration
depicting the fabrication procedure for the NVU on a chip. Left and right panels show axial and lateral cross-sections of the NVU
on a chip, respectively. (D) Fluorescence images of live (green) and dead (red) cells cultured on the chips; bECs on blood vessels
and NVU-composing cells in the extracellular matrix (ECM) stained with calcein-AM and PI, respectively, at days in vitro (DIV)
1 (left), 3 (middle), and 5 (right). Nuclei (blue) were stained with Hoechst. Scale bar: 100 µm. (E) Quantification of cell viability of
the cells shown in (D). (F) Fluorescence images displaying the morphology of all of the cells in the 3D collagen microenvironment
at DIV 1, pre-labeled with Vybrant DiI, DiO, and CM-DiI before seeding in collagen. Scale bar: 20 µm. (G) Confocal z-stacked
fluorescence images (maximum intensity plot) showing the endothelial markers CD31 (red, left), tight junction protein of zonula
occludens-1 (ZO-1; green, middle) and vascular endothelial (VE)-cadherin (green, right), and nuclei (4,6-diamidino-2-
phenylindole, DAPI; blue) to visualize the engineered brain microvasculature with hCMEC/D3 cells. Scale bar: 50 µm. (H)
Fluorescence images showing cells in the NVU on a chip with their specific markers at DIV 5: astrocyte (glial fibrillary acidic
protein, GFAP), brain pericyte (NG2), neuron (neurofilament-L), microglia (CD40), oligodendrocyte (CNPase), and neural stem
cell (nestin). Scale bar: 50 µm.

and 0.1% (v/v) glutaraldehyde for 30 min [52, 53].
The surface-coated PDMS chamber was then washed
with phosphate-buffered saline (PBS) at least three
times to remove unbound molecules that could be
cytotoxic, and the chamber was stored at 4 ◦C until
further use.

2.2. Culture of human cell resources composing the
NVU
The commercially available human cerebral
microvascular endothelial cell line hCMEC/D3
(Cedarlane) was cultured in endothelial cell basal
medium-2 (Lonza) supplemented with hydro-
cortisone, ascorbic acid, vascular endothelial growth
factor, long arginine 3-insulin-like growth factor-1,
human epidermal growth factor, gentamicin sulfate-
amphotericin (GA-1000), human fibroblast growth
factor-B, heparin, and 2% (v/v) fetal bovine serum
(FBS), according to the manufacturer’s protocol, and

maintained in a humidified atmosphere containing
5% CO2 at 37 ◦C.

Telencephalon tissue was used to prepare immor-
talized cell lines, except for bECs, and dissoci-
ated to generate brain cells, as previously reported
[54–60]. Human neurons (F3.ngn1) [60], human
astrocytes (L1.AST) [54], human microglia (HMO6)
[59], human oligodendrocytes (F3.olig2) [56], and
human neural stem cells (F3) [55, 57, 58] were gen-
erated by transfection with v-myc and c-myc genes of
brain cells and maintained under the recommended
culture conditions. These cells were obtained from
the University of British Columbia. Human pericytes
(L1.PC) were generated from human brain vascular
PCs (ScienCell).

Human microglia (HMO6), oligodendro-
cytes (F3.olig2), and neural stem cells (F3)
were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) without phenol red (Welgene)
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supplemented with 5% (v/v) FBS (GenDEPOT) and
5 µg ml−1 gentamicin (Welgene) in a humidified
atmosphere with 5% CO2 at 37 ◦C. These cells were
subcultured every 2–3 d. Human neurons (F3.ngn1)
were maintained in Neurobasal-A medium (Gibco)
supplemented with 2% (v/v) FBS (GenDEPOT),
5 µg ml−1 gentamicin (Welgene), and B-27 plus
supplement (Gibco). Human neurons were subcul-
tured every 3–4 d. Human astrocytes (L1.AST) were
maintained in astrocyte medium (Gibco) supple-
mented with 2% (v/v) FBS (GenDEPOT), 5 µg ml−1

gentamicin (Welgene), and G5 plus supplement
(Gibco). Human astrocytes were subcultured every
3 d. Doxycycline was added to the medium every
2 d at 1 µg ml−1 to promote cellular proliferation.
Human brain vascular pericytes (L1.PC) were estab-
lished by transfection with v-myc, as described above,
and maintained in PC medium (ScienCell) supple-
mented with 2% (v/v) FBS and PC growth supple-
ment (ScienCell). These cells were subcultured every
4 d. Notably, we added human neural stem cells,
which constitute less than 1% of the brain, to help co-
culture of other NVU-composing cells while remain-
ing undifferentiated and secreting growth factors.

The immortalized human microglia-SV40 cell
line (ABM) was used for a decoupling assay in
inflammation. The cells were maintained in DMEM-
F12 (D6421; Sigma Aldrich) containing 10% (v/v)
FBS (Corning) and 1% (v/v) penicillin streptomycin
(Gibco).

To track the morphological changes in NVU-
composing cells in collagen, we pre-labeled each cell
type with the Vybrant™ Multicolor Cell-Labeling Kit
(V22889; Thermo Fisher) before seeding, according
to the manufacturer’s protocol. First, each cell type
was suspended in serum-free medium at a density
of 1 × 106 cells ml−1. The labeling reagent (5 µl)
was added to 1 ml of the cell suspension, followed by
incubation for 20 min at 37 ◦C. Then, the pre-labeled
cell suspension was centrifuged, and the supernatant
was rinsed three times with serum-free media to
remove any residual labeling reagent. Finally, the pre-
labeled cells were mixed with collagen and cultured
on our chip, as described below. Themorphologies of
the cells were monitored using a laser scanning con-
focal microscope (LSM 700; Zeiss).

2.3. Collagen preparation
To prepare collagen to seed NVU-composing cells,
neutralized (pH ∼ 7.5, determined by phenol red in
the mixture) collagen solution was prepared as pre-
viously described [61]. In brief, commercially avail-
able rat tail collagen type I (stock concentration of
∼10mgml−1; Corning) was diluted to a final concen-
tration of 3 mg ml−1 by adding 10×DMEM (Sigma-
Aldrich), 1× DMEM (Welgene), and 0.5 N NaOH
(Sigma-Aldrich) according to the manufacturer’s
instructions. The entire procedure was performed on

ice to prevent undesired initiation of gelation before
injection into the PDMS chamber.

2.4. Fabrication of brain endothelial lumen and
co-culture of NVU-composing cells in collagen
For the 3D co-culture of NVU-composing cells,
except for bECs, cell suspensions containing astro-
cytes, PCs, neurons, microglia, oligodendrocytes, and
neural stem cells were transferred to a sol state of
the neutralized collagen solution and mixed gently
at a final seeding density of 1 × 105 cells ml−1.
Thereafter, the cell-seeded collagen was injected into
the rectangular PDMS chamber (4 × 10 × 1 mm),
where the three microneedles (wall-to-wall inter-
channel distance of 1 mm) were pre-inserted. The
NVUchipwas incubated at 37 ◦C for 30min for colla-
gen gelation, and themicroneedles were subsequently
removed from the gelled scaffold. As a result, hol-
low and cylindrical lumen channels (235 µm in dia-
meter) was formed in the middle of the collagen scaf-
fold. After incubating the chip with culture media
applied to reservoirs for at least 1 h in an incubator,
bECs (hCMEC/D3; 4× 106 cell ml−1) were delivered
through the central microchannel and allowed to
attach to the luminal surface of the collagen channel.
The chipwas flipped for 10min after the introduction
of the bEC cell suspension to allow uniform cell seed-
ing on the cylindrical surface. Finally, culture media
was infused through the bEC-plated channel to wash
out unattached cells. The NVU chip was maintained
in a humidified atmosphere with 5% CO2 at 37 ◦C,
and the medium was changed every day.

2.5. Estimation of cell viability
The bECs and NVU-composing cells cultured on
chips were stained with calcein-AM (C1430; Ther-
moFisher), propidium iodide (PI; P4564; Sigma-
Aldrich), and Hoechst 33342 (H3570; Invitrogen) at
DIV 1, 3, and 5. A staining solution was prepared
by mixing each reagent with serum-free media to
a working concentration of 1 µM for calcein-AM,
1 µg ml−1 PI, and 10 µg ml−1 Hoechst 33342. The
cells in the chips were incubated with the staining
solutions at 37 ◦C for 30 min and then washed with
cell culture media before fluorescence imaging. To
quantify cell viability, we counted individual green
(live) and red (dead) cells from images acquired from
multiple chips (n=3) and calculated the ratio of green
to red cells for blue (total) cells.

2.6. Immunofluorescence staining
After culturing the NVU chips for 5 d, we fixed the
cells with 4% (v/v) paraformaldehyde for 30 min
and then permeabilized them with a solution con-
taining 0.3% (v/v) Triton X-100 and 3% (w/v)
bovine serum albumin (BSA) for 30 min by deliv-
ering the reagents through the three microchannels.
As primary antibodies, rabbit anti-CD31 antibody
(ab32457; Abcam), mouse anti-vascular endothelial
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(VE)-cadherin antibody (SC-9989; SantaCruz),
mouse anti-zonula occludens-1 (ZO-1) antibody
(33–9100; Invitrogen),mouse anti-intercellular adhe-
sion molecule 1 antibody (MA133754; Invitrogen),
rabbit anti-glial fibrillary acidic protein (GFAP) anti-
body (Z0334; Dako), rabbit anti-neural/glial anti-
gen 2 (NG2) antibody (AB5320; Millipore), rabbit
anti-CD40 antibody (ab58391; Abcam), anti-CD11b
antibody (NB110-89474; Novus Biologicals), rabbit
anti-neurofilament L antibody (AB9568; Millipore),
mouse anti-CNPase antibody (MAB326; Millipore),
and mouse anti-nestin antibody (MAB5326; Milli-
pore) were diluted (1:200) with 3% [w/v] BSA and
then kept with the chips for 4 h at room temperat-
ure. After washing the microchannels with PBS, the
NVU chips were incubated with secondary antibod-
ies, including Alexa 488-labeled anti-mouse (A11001;
dilution factor of 1:200; ThermoFisher), Alexa 594-
labeled anti-rabbit (A110123; dilution factor of 1:200;
ThermoFisher), and Alexa 488-labeled anti-rabbit
(ab150077; dilution factor of 1:200; Abcam) antibod-
ies for 2 h at room temperature. For nuclei staining,
4,6-diamidino-2-phenylindole solution was diluted
(1:1000) and incubated with the cells for 30 min at
room temperature. For immunostaining of the cyto-
skeleton, the cells were incubated with phalloidin-
TRITC (P1951, Sigma-Aldrich) diluted with 1% (v/v)
DMSO solution as per the recommended protocol.
Fluorescence z-stack images were acquired using a
laser scanning confocal microscope (LSM 700; Zeiss).

2.7. Quantitative estimation of barrier function
(transendothelial permeability) in the NVU chips
We assessed barrier function by measuring the
transendothelial permeability of our engineered
endothelium, as previously described [62]. In brief,
culture media was aspirated from each reservoir,
and then 10 µM of 4 kDa and 40 kDa fluorescein
isothiocyanate (FITC)-dextran (Sigma-Aldrich) in
PBS was added to the brain-vascularized microchan-
nel. Immediately after the delivery of FITC-dextran,
molecular transport (i.e. diffusion across the brain
endothelium toward the surrounding tissue) was
monitored by sequential acquisition of confocal
fluorescence images (LSM 700; Zeiss) for 5 min at
1 min intervals. Our custom MATLAB (Mathworks)
code allowed the quantification of transendothelial
permeability by analyzing temporal evolutions of
fluorescence intensity in the perivascular space of a
cylindrical coordinate.

2.8. Inflammation assay
To induce an inflammatory condition and determ-
ine the protective effect of NVU, lipopolysac-
charide (LPS; Sigma-Aldrich), a known factor in
inflammation-associated diseases, was used. The
mature endothelium was incubated with a final con-
centration of 100 µg ml−1 LPS in culture media
for 1 d, followed by washing with fresh medium to

remove residual LPS. Then, 40 kDa FITC-dextranwas
infused into the vessel, and fluorescence images were
acquired to quantify transendothelial permeability,
as described above.

2.9. Cytokine microarray
To detect cytokines secreted by cells in our NVU
chips, we collected conditioned culture media from
the reservoirs. Following the service provider’s
protocol, the collected media was purified and
analyzed to detect 1000 human cytokines using a
human L1000 microarray (e-biogen Inc.).

2.10. Statistical analysis
All quantitative data are expressed as mean ± stand-
ard error of the mean values. Statistical analysis
was performed using a one-way analysis of variance
(ANOVA) on Prism (GraphPad). For the determin-
ation of statistical significance, p-values < 0.05 were
considered to be significant.

3. Results

3.1. Engineered in vitromicrofluidic model for
recapitulating NVU
Our NVU model consisted of a perfusable cyl-
indrical brain endothelium embedded in collagen
where six types of NVU-composing cells resided. To
engineer the lumen structure in vitro, we exploited
microneedles with a diameter of 235 µm as templates
for microfluidic endothelialization (figure 1(C)), as
reported previously [62]. After gelation of the col-
lagen scaffold, gentle removal of the microneedles
allowed the formation of microchannels with
identical sizes and shapes.

We used the hCMEC/D3 cell line to reconstruct
the human cerebral microvasculature. To ensure
attachment of human bECs uniformly on the luminal
surface of the collagen microchannels, we flipped our
NVU chip once 10min after introducing the bEC sus-
pension. The attached bECs covered the entire sur-
face of the collagen microchannel and were organ-
ized into a monolayer of 3D straight, cylindrical
brain endothelium within 2–3 d. As bECs tend to
invade the soft matrix after organization into the
monolayer due to their high proliferative property,
these cells were cultured on the stiffer collagen chan-
nel to facilitate visualization of junctional markers.
We verified the formation of cerebral microvascu-
lature in vitro by the assessing the expression of
endothelial cell-specific markers such as CD31, ZO-1,
and VE-cadherin (figure 1(G)).

We chose 3 mg ml−1 (0.3% (w/v)) of collagen
type I as the scaffold material primarily to maintain
the structural fidelity of themicrofluidic endothelium
while matching the softness [62–64] and viscoelasti-
city [65] of neural tissues. The choice of a suitable
range of mechanical properties is crucial as the sur-
rounding matrix also contains many living adherent
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Figure 2. Effect of bEC and PC density on barrier function. (A) Representative color-mapped fluorescence images displaying
perivascular transport of 40 kDa FITC-dextran across the (i) acellular collagen channel and (ii)–(v) engineered brain
endothelium at 0 (top) and 5 min (bottom), at DIV 1 (left) and 5 (right), in four different cases: low densities of bEC and PC (ii),
high density of bEC and low density of PC (iii), low density of bEC and high density of PC (iv), and high densities of bEC and PC
(v). Scale bar: 200 µm. (B) Temporal evolutions of transendothelial permeability for the four cases shown in (ii)–(v). ns denotes
statistical insignificance (p > 0.05). Error bars indicate standard deviation (n = 4). (C) Transendothelial permeability at DIV 5 for
the four cases. ∗∗p = 0.0027, ∗∗p = 0.0012, ∗∗∗p = 0.0006 (one-way analysis of variance). Error bars indicate standard deviation
(n⩾ 3). (D) Transendothelial permeability of 4 and 40 kDa FITC-dextran at DIV 5 (n = 4). (E) Confocal fluorescence images
(maximum projection intensity images) showing PC distributions (red) around the brain microvasculature (green) depending on
low (top) and high (bottom) seeding densities. Nuclei are stained in blue. The orthogonal view shows PCs, with high seeding
density, in direct contact with the brain microvasculature. Scale bar: 100 µm.

cells capable of pulling the matrix. We seeded astro-
cytes, PCs, neurons, microglia, oligodendrocytes, and
neural stem cells in 3 mg ml−1 collagen before gela-
tion. We tracked the morphological changes of indi-
vidual cell types with cell-labeling agents and con-
firmed that all six cell types had spread well in the
3D hydrogel (figure 1(F)). Additionally, we estim-
ated the viability of bECs and NVU-composing cells
cultured in the chips. We confirmed that all the
cells remained viable, with no abnormal cell death,
throughout the culture period (i.e. DIV 1, 3, and
5), and with viability higher than 90% (figures 1(D)
and (E)). These data indicate that our fabricatedNVU
on a chip and on-chip microenvironment were suit-
able for 3D co-culture. Immunocytochemistry con-
firmed that these NVU-composing cells expressed
cell type representative markers: astrocyte-GFAP,
pericyte-NG2, neuron-neurofilament L, microglia-
CD40, oligodendrocyte-CNPase, and neural stem
cell-nestin (figure 1(H)).

3.2. Density of brain PCs as a pivotal parameter for
the barrier function of NVU
Cerebral blood vessels in the NVU have distinct bar-
riers known as the BBB that regulates the molecu-
lar transport at the interface between the vascular
system and the brain tissue. Tight junctions (TJs)
formed between adjacent endothelial cells physic-
ally inhibit the entry of molecules and protect brain

tissue from potentially toxic substances. Therefore,
an engineered NVU model should be capable of
mimicking this barrier function. To evaluate bar-
rier function, we measured the transendothelial per-
meability of a fluorescent model molecule, FITC-
dextran, by scanning the temporal evolution of
molecular transport from the brain microvasculature
to the surrounding collagen space. More specific-
ally, immediately after loading 10 µM of 4 kDa
(Stoke’s radius of∼1.4 nm) and 40 kDa FITC-dextran
(Stoke’s radius of ∼4.5 nm) into the engineered
3D brain endothelium, we acquired a series of con-
focal fluorescence micrographs. We then analyzed
fluorescence in the perivascular region using a cus-
tom MATLAB code, as previously described [62].
This technique allowed for quantitative estimation of
transendothelial permeability.

Based on our assessment, we found that the seed-
ing density of human bECs and PCs was critical for
low permeability levels within a week. First, we con-
trolled the density of bECs while keeping that of PCs
and other cell types identical. When we loaded the
collagen microchannel with 4 × 106 cell ml−1 (a
high density) (figure 2(A) (iii)), transendothelial per-
meability reached 4.04× 10−6 ± 4.36× 10−6 cm s−1

at DIV 5, whereas 3 × 106 cell ml−1 (a low dens-
ity) (figure 2(A) (ii)) led to higher mean permeab-
ility of 4.86 × 10−5 ± 1.47 × 10−5 cm s−1 at
DIV 5 (figures 2(B) and (C)). We also controlled
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Figure 3. Contribution of NVU-composing cells to transendothelial permeability. (A), (B) Representative color-mapped
fluorescence images displaying perivascular transport of 40 kDa FITC-dextran across the engineered brain endothelium at 0 (top)
and 5 min (bottom), in mono-culture of brain endothelial cells (bEC; hCMEC/D3; left) and co-culture with six NVU-composing
cells (right), at DIV 1 and 5. Scale bar: 200 µm. (C) Temporal evolutions of transendothelial permeability for the two cases shown
in (A) and (B). Error bars indicate standard deviation (n⩾ 3). (D) Transendothelial permeability at DIV 5 for the two cases.
∗∗∗p = 0.0002 (one-way analysis of variance). Error bars indicate standard deviation (n⩾ 6).

the seeding density of PCs because brain PCs have
been reported to be the primary regulators of vas-
cular integrity and barrier function [8]. We found
that increasing the density of PCs from 3.25× 103 to
3 × 104 cell ml−1 (i.e. 30% of the total cell popula-
tion in the collagen scaffold) reduced transendothelial
permeability (figure 2(A) (iii) and (v)) significantly
to 4.28 × 10−7 ± 4.5 × 10−7 cm s−1 at DIV 5
(figures 2(B) and (C)). Interestingly, the density of
bECs, combinedwith the high density of PCs, affected
the maturation of vascular permeability early, start-
ing from DIV 3 (figure 2(B)). At DIV 5, the matured
brain endothelium showed low transendothelial per-
meability (P4 kDa = 1.8× 10−6 ± 0.66× 10−6 cm s−1

and P40 kDa = 5.84 × 10−7 ± 1.18 × 10−7 cm s−1)
(figure 2(D)).

These data suggest that the high seeding density of
PCs allowed for acquisition of the enhanced barrier
functionality. Additionally, we observed many more
PCs near the brain microvasculature and some were
in direct contact with themicrofluidic brain endothe-
lium (figure 2(E)). These observations suggest that
the enhanced barrier function could be attributed to
enhanced interactions between bECs and PCs via dir-
ect contact and paracrine effects. However, we noted
that direct contact did not result from active migra-
tion of PCs toward the brain microvasculature within
5 d of culture. In another study, such active migra-
tion of PCs to microfluidic endothelia formed with
HUVECs occurred in approximately 2 weeks [52].

3.3. NVU-composing cells supporting the
maturation of the transport barrier in a
cytokine-mediated manner
We next confirmed whether the co-culture of
multiple types of NVU-composing cells affects
the NVU barrier function. When comparing the
mono-culture of bECs and the co-culture of
six types of NVU-composing cells along with
bECs, the co-culture showed a tighter barrier
with low transendothelial permeability of 2.96

× 10−7 ± 2.12 × 10−7 cm s−1 at DIV 5 than did
the mono-culture (Pmono = 5.05 × 10−6 ± 2.49
× 10−6 cm s−1) (figure 3(D)). These results indicate
that NVU-composing cells support the maturation
of the transport barrier.

To determine whether soluble factors secreted by
NVU-composing cells may induce maturation of the
vascular barrier function, we analyzed cytokine levels.
We collected cell culture media from our NVU chip
at DIV 5 and performed cytokine microarray analysis
(figure 4(A)). When quantifying relative differences
in cytokine secretion as ratios of that secreted by
the co-culture of NVU-composing cells and bEC to
that secreted by monoculture of bECs, some signi-
ficant differences were observed in several categor-
ies. Notably, large amounts of cytokines associated
with blood vessel development and maturation and
vasculogenesis-related cytokines increased in the co-
culture (i.e. the NVU chip) (figure 4(B)). Further-
more, the increased level of factors related to cell-
to-cell junctions, such as TJs and adherens junctions
(AJs) supported the result of the lower transen-
dothelial permeability observed in the NVU chip.
These results suggest a paracrine effect by soluble
factors released in the multicellular microenviron-
ment, which would be essential for recapitulating
the in vivo physiological structure and functionality.
Interestingly, the cytokines associated with immune
and inflammatory regulation also increased, which
could be attributed to co-culturing with microglia.
We have described the effects of the increased
cytokines related to immune and inflammatory regu-
lation in more detail in the following section.

3.4. NVU-composing cells alleviating LPS-induced
neuroinflammation
Among NVU-composing cells, astrocytes and
microglia are known to play a regulatory role in
both the barrier function and the immune response
within the central nervous system [6, 37, 66]. To
confirm the inflammation modulation capability
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Figure 4. Analysis of secreted cytokines by microarray. (A) Schematic illustration depicting the collection of culture media for
cytokine microarrays. (B) Color-mapped fold changes in cytokine secretion as ratios of that released by co-culture with
NVU-composing cells to that released by mono-culture of brain endothelial cells (bECs; hCMEC/D3). The secreted cytokines are
categorized into various sub-groups, including TJs, AJs, cell–cell junctions, immune responses, and cell–matrix adhesion.

of NVU-composing cells, we induced inflamma-
tion by delivering an LPS solution (100 µg ml−1)
through the engineered 3D brain endothelium at
DIV 5 and incubating for 24 h (figure 5(A)). Given
that we introduced the stimulant through the blood
vessel, not through the brain tissue region, this
approach could partly mimic vasculature-originated
inflammation. As shown in figures 5(B) and (C),
the leakage of 40 kDa FITC-dextran increased upon
LPS exposure only in the bEC mono-culture. In
contrast, no significant change in vascular permeab-
ility occurred in the NVU models (figure 5(C)),
although bECs expressed the inflammatory marker
ICAM-1 (figure 5(D)). Additionally, we decoupled
microglia from other NVU-composing cells to separ-
atelymonitor the response of brain immune cells dur-
ing inflammation. Morphological modifications of
microglia were observed and visualized by phalloidin
staining. As shown in figure 5(E), inflammation-
stimulated microglia had elongated branches with
a similar number of branches in the normal state.
This morphological change is in agreement with that
reported in a previous study that used an immortal-
ized microglial cell line [67]. These results suggest
that NVU-composing cells respond to inflammat-
ory stimuli and modulate the barrier function under
inflammatory conditions to maintain their normal
function. We also measured changes in the cytokine
secretion before and after the LPS treatment, and
microarray data displayed fold changes as ratios of
‘+LPS’ to ‘−LPS’ (figure 5(F)). According to the

analysis, the cytokines associated with blood ves-
sels, immune response, and inflammatory response
showed marked changes after LPS-induced stimu-
lation. Notably, in the mono-culture of bECs, the
secretion of bone morphogenic protein-binding
endothelial regulator (BMPER), which is known
to activate endothelial sprouting and weaken the
adhesion between cells and the matrix, increased
when LPS stimulated the brain microvasculature.
This cytokine pattern indicates that an inflammatory
material can easily damage the cell–cell and cell–
matrix integrity and loosen the barrier function
in bEC mono-culture models. In addition, level of
Bruton’s tyrosine kinase, which regulates the pro-
duction of mediators of inflammation, was increased
in our NVU model. This upregulation represents an
enhanced inflammatory defense system in a multicel-
lular microenvironment under external stimulation.

4. Discussion

The NVU, a structural and functional unit in
the brain, strictly controls the molecular transport
between the brain and cerebral vessels to maintain
cerebral homeostasis. Many brain disorders, includ-
ing dementia, traumatic brain injury, edema, and
neuroinflammation, are accompanied by cerebrovas-
cular dysfunction, which is affected by multicellular
crosstalk in pathological processes. In recent stud-
ies, NVU in vitro models have been developed to
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Figure 5. Contribution of NVU-composing cells to alleviation of lipopolysaccharide (LPS)-induced neuroinflammation.
(A) Schematic illustration depicting treatments with LPS to induce neuroinflammation, followed by collection of culture media
for cytokine microarrays. (B) Representative color-mapped fluorescence images displaying perivascular transport of 40 kDa
FITC-dextran across the engineered brain endothelium at 0 (top) and 5 min (bottom), in mono-culture of brain endothelial cells
(bECs; hCMEC/D3; left) and co-culture with six NVU-composing cells (right), at DIV 5, without (−LPS) and with LPS (+LPS).
Scale bar: 200 µm. (C) Transendothelial permeability at DIV 5 for the four cases shown in (B). ∗p = 0.029 (one-way analysis of
variance). ns denotes statistical insignificance (p = 0.1836 [>0.05]). Error bars indicate standard deviation (n⩾ 5). (D) Confocal
z-stacked fluorescence images (maximum intensity plot) showing expression of intercellular adhesion molecule (ICAM)-1
(green), an inflammatory marker of endothelial cells, and nuclei (4,6-diamidino-2-phenylindole, DAPI; blue). Scale bar: 100 µm.
(E) When exposed to high concentration of LPS, morphological changes of microglia were confirmed and visualized by actin
filament staining. The length of the branches sprouted from the microglia significantly increased. ∗∗∗∗p < 0.0001. Scale bar:
50 µm. (F) Color-mapped fold changes in cytokine secretion as ratios of+LPS to−LPS. The secreted cytokines are categorized
into various sub-groups, including cytokines related to innate/humoral immune response and regulation of inflammatory
response.

mimic the in vivo brain microenvironment and func-
tion [28, 48–50]. We have also established an all-in-
hydrogel NVU in vitromodel with 3D co-culture and
demonstrated the role of NVU-composing cells in the
functionality of the NVU.

We used collagen type I, which presents proper
softness for mimicking the ECM, as it enables the
fabrication of hollow vascular channels and main-
tenance of structural fidelity without disruption or
shrinkage over weeks. In this study, we focused on
demonstrating the capability of co-culturing human
cerebral endothelial cells on the luminal surface of
a cylindrical collagen microchannel and six types of

brain-constituting cells (i.e. PCs, astrocytes, neurons,
microglia, oligodendrocytes, and neural stem cells)
within the 3D collagen scaffold. As PCs, which serve
as a vital component of the BBB, are essential for
stabilizing cerebral blood vessels, we controlled the
density of PCs in the collagen as a primary microen-
vironmental factor.When we cultured bECs surroun-
ded by a high density (3 × 104 cell ml−1) of PCs, the
brain microvasculature showed a tight barrier func-
tion with low permeability. Additionally, to determ-
ine whether this vascular functionality was mediated
by indirect interactions with some soluble factors
secreted from multiple cell types, we analyzed the
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cytokine levels in the co-culture media. We found
an increased secretion of cytokines related to blood
vessel development/maturation and vasculogenesis,
such as endothelin 1, Wilms Tumor 1, apolipopro-
tein B, endothelial cell adhesion molecule, growth
differentiation factor 2, junction adhesion molecule
like, and BMPER, all of which showed more than
1.5-fold increases in the NVU chip. These data sug-
gest that a paracrine effect of cytokines in the multi-
cellular environment is indispensable for recapitulat-
ing in vivo functionality.

Inflammation is a hallmark of brain pathogen-
esis. Physiologically, microglia and astrocytes are
known to release various types of molecules to mod-
ulate an acute or chronic inflammatory response
[66, 68]. To validate the inflammation-regulatory
function of our NVU-chip, we exposed the NVU to
LPS, a model inflammation stimulant, via the brain
endothelium for a day. Interestingly, the disruption
of the enhanced barrier function by LPS exposure was
significantly less in our NVU model, compared with
that in themono-culture of bECs. Furthermore, when
LPS stimulates the brain endothelium, dramatic vari-
ations in cytokine secretion are mainly associated
with endothelial cell activation. In the co-culture
or LPS-stimulated states, high levels of cytokines
related to the regulation of immune and inflam-
matory responses were confirmed in the co-cultured
NVU system. These results suggest an enhanced pro-
tective effect in the NVU microenvironment, medi-
ated by cytokines from co-cultured cells.

5. Conclusions

We engineered an NVU in vitro model by co-
culturing six types of NVU-composing cells, includ-
ing PCs, astrocytes, neurons, microglia, oligodendro-
cytes, and neural stem cells with a perfusable brain
endothelium in a 3D collagen microenvironment.
We found that (a) NVU-composing cells, especially
brain PCs, are important for the maturation of bar-
rier function, (b) NVU-composing cells alleviate the
exogenous stimulant-induced inflammation, and (c)
the maturation of barrier function and modulation
of inflammatory response are partly regulated in
a cytokine-mediated manner. These results consist-
ently support the need for introducing multiple cell
types in the fabrication of artificial brain tissue mod-
els. Our biomimetic NVU in vitromodel could serve
as a platform for investigating the functions of NVU-
composing cells under physiological and pathological
conditions and for evaluating the efficacy of drugs
with an add-on disease module such as glioblastoma
multiforme.
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