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INTRODUCTION

One of the most important roles of the ovaries is the produc-
tion of gametes and sex hormones.1 Depletion of ovarian folli-
cles and sex hormones leads to menopause, which can elicit 
numerous symptoms in women. Osteoporosis is the most com-
mon disease in post-menopausal women and is highly related 
to fracture-induced death in senile individuals. Sex-hormone 
deficiency also occurs due to vulvovaginal atrophy in women 
who have experienced menopause. Estrogen deficiency dis-
turbs the homeostasis between bone formation and resorp-
tion as it significantly reduces bone density through excessive 
bone resorption. Over 1.5 million fractures per year are attrib-
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uted to osteoporosis, including approximately 300000 hip and 
700000 vertebral fractures.2,3 Therefore, preventing meno-
pause-induced osteoporosis is a socio-economic necessity in 
developed countries with an aging population.

Pharmacological hormone replacement therapy (pHRT) has 
been widely used to treat menopause symptoms. However, 
pHRT is associated with several side effects, including breast 
cancer, cardiovascular diseases, and venous thromboembo-
lism.4 Recently, bioengineering-mediated research has been 
considered to reduce pHRT-induced side effects.5 No studies 
have investigated the optimization of biomaterials thus far. 

Since 2004, ovarian tissue cryopreservation and auto-trans-
plantation for fertility preservation have been clinically applied 
in women with cancer, premature ovarian insufficiency, and 
other gynecological conditions.6,7 Notably, this technique is per-
formed to restore the hypothalamus-anterior pituitary-ovary 
axis a few months after transplantation.8-10 Expounding on this, 
we hypothesized that supplementing ovary-producing hor-
mones by cryopreservation and auto-transplantation would im-
prove menopause symptoms. 

MATERIALS AND METHODS

Animals and experimental groups
A total of 160 eight-week-old female CD-1 mice was purchased 
from Orient Bio Inc. (Seongnam, Korea). The mice were housed 
in a room with a 12-h light/dark cycle. All experimental proce-

dures were approved by the institutional animal care and use 
committee of the Seoul National University Bundang Hospital 
(BA-1910-282-082-01). Mice were randomly divided into the 
following four groups: sham (incision only), ovariectomy 
(OVX), ovarian tissue transplantation (OTPL) 1, and OTPL 2 
groups. All surgeries were performed under anesthesia with zo-
letil and xylazine (30 mg/kg+10 mg/kg, intraperitoneal injec-
tion). Fig. 1 depicts the experimental scheme of this study. 

Ovariectomy-induced osteoporosis and 
auto-transplantation of cryopreserved ovary
After 2 weeks of adaptation, 10-week-old female CD-1 mice 
were ovariectomized, and the ovaries were cryopreserved us-
ing a previously reported vitrification method.11 The ovaries 
were successively exposed to the equilibration and vitrification 
solutions for 10 and 5 minutes, respectively. The ovaries were 
vitrified with liquid nitrogen and cryopreserved until trans-
plantation. All surgical procedures in the other groups were 
performed identically to those in the sham group. Eight weeks 
after OVX, the cryopreserved ovaries were successively incu-
bated in 1-M, 0.5-M, 0.25-M, and 0-M sucrose-based solutions 
for 5 minutes each and subcutaneously transplanted into each 
mouse in the OTPL 1 and OTPL 2 groups. A vitrified-warmed 
ovary was unilaterally grafted to mice in the OTPL 1 group, 
whereas mice in the OTPL 2 group underwent bilateral ovary 
transplantation. Mice were euthanized 0, 4, 8, and 12 weeks 
after auto-transplantation, and all tissues used in this study 
were collected and fixed in 4% paraformaldehyde.

A

B

Fig. 1. An experimental scheme of this study. (A) Post-menopausal osteoporosis was induced by bilateral OVX. The ovaries were cryopreserved and 
subcutaneously transplanted 8 weeks after OVX. (B) Every 4 weeks after ovary transplantation, mice were euthanized for analysis. tHRT, tissue-based 
hormone replacement therapy; OVX, ovariectomy.
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Bone mineral density, bone mineral contents, bone 
volume, and fat and body weight assessments using 
dual energy X-ray absorptiometry after OVX and 
OTPL 
We demonstrated that bilateral OVX definitively decreased 
bone mineral density (BMD), bone mineral contents (BMC), 
and bone volume (BV) regardless of sites of measurement as 
shown in Fig. 2. Every second week after OVX or every fourth 
week after OTPL, the bone and body composition of 10 mice 
per group were analyzed using dual energy X-ray absorptiom-
etry (DXA) (InAlyzer, Medikors, Seongnam, Korea), which is 
capable of scanning in vivo. BMD, BMC, and BV values of the 
body, femur, and lumbar vertebrae were calculated using InA-
lyzer software.

Eight weeks after OVX, all parameters were significantly 
lower in the OVX group than in the sham group. We either uni-

laterally or bilaterally transplanted ovaries into OVX mice to 
confirm the effectiveness of tissue-based hormone replacement 
therapy (tHRT). BMD, BMC, and BV after ovary transplantation 
were measured by DXA to investigate whether the grafts would 
reverse menopause-related bone loss. The indexes were mea-
sured following the region of interest (ROI) of the whole femoral 
bone and L4–5 vertebrae chosen by the researchers. Other char-
acteristics, including body weight, fat, and fat in tissue weight, 
were evaluated using DXA analysis.

Micro-CT
Fixed femoral bones of two mice were scanned by micro-CT 
(Skyscan 1176) at 0, 4, 8, and 12 weeks post-transplantation to 
confirm the results of DXA analysis. The specimens were po-
sitioned horizontally for micro-CT scanning, and the systems 
were operated at 60 kV and 417 μA. Images were reconstructed 
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Fig. 2. Bioimaging analysis of the body, femur, and lumbar vertebrae measured DXA after OVX. (A-I) DXA was performed to evaluate OVX-induced os-
teoporosis in mouse models. BMD (A-C), BMC (D-F), and BV (G-I) of the body, femur, and lumbar vertebrae were measured until 20 weeks after OVX. 
Ten mice in each group were monitored every 2 weeks after OVX. Values of the femur and lumbar vertebral bones were calculated following the ROI. 
The mean of the OVX group (red empty squares) was compared with the of the sham group (black dots). Asterisks represent the p-value (*p<0.05, 
**p<0.01, ***p<0.001). BMD, bone mineral density; BMC, bone mineral contents; BV, bone volume; DXA, dual energy X-ray absorptiometry; OVX, 
ovariectomy; ROI, region of interest.
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to be cross-sectional using NRecon software (Micro Photonics,  
Allentown, PA, USA). Tomograms were converted to 3D struc-
tures, which were sectioned transaxially using CTvox software 
(Version. 3.3.0.0, Bluescientific, Cambridge, UK).

Uterine weight, gross appearance, histology, and 
endometrial thickness
Although menopausal women experience vulvovaginal atrophy 
rather than uterine atrophy, we assessed uterine size, weight, 
and histology of ovariectomized mice in the present study, be-
cause it is difficult to evaluate vulvovaginal symptoms in mouse 
models. The uterus was dissected following euthanasia, and 

the uterine weights of nine to 10 mice were measured. The uter-
ine weight was divided into body weight. Gross examination was 
performed before fixation, and fixed uterine samples were em-
bedded into paraffin blocks and sectioned into 4-μm layers. The 
slides were stained with hematoxylin and eosin according to 
general protocols. Endometrial thickness was manually mea-
sured using i-solution software (IMT i-solution Inc., Daejeon, 
Korea), and the average vertical and horizontal diameters were 
compared between groups.

Statistical analysis
All data are presented as a mean±standard error of the mean. 

Fig. 3. Bioimaging analysis of the total body and femur and lumbar vertebrae measured by DXA after ovary transplantation. (A-I) Every 4 weeks after 
ovary transplantation, BMD (A-C), BMC (D-F), and BV (G-I) values of 9 or 10 mice per group were measured using DXA. Values of the femur and lum-
bar vertebral bones were calculated following the ROI. The means of the OVX groups (red empty squares) were compared with those of the sham 
(black dots), OTPL 1 (blue squares), and OTPL 2 (green triangles) groups. Asterisks represent the p-value at 12 weeks (*p<0.05, **p<0.01, ***p<0.001). 
DXA, dual energy X-ray absorptiometry; BMD, bone mineral density; BMC, bone mineral contents; BV, bone volume; OVX, ovariectomy; OTPL, ovarian 
tissue transplantation; ROI, region of interest.
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Fig. 4. Microstructure of the femoral bone imaged by micro-computed tomography. To assess bone recovery after ovary transplantation, fixed femurs 
of two mice were scanned using micro-computed tomography every 4 weeks after ovary transplantation. Tomograms were reconstructed to be 
cross-sectional images. OVX, ovariectomy; OTPL, ovarian tissue transplantation.

To remove outliers (α=0.05), we performed Grubb’s test using 
the outlier calculator that GraphPad offered (https://www.
graphpad.com/quickcalcs/grubbs1/). Average (without outli-
ers) values of mice per group were compared among groups 
using two-way ANOVA followed by Bonferroni posttests using 
GraphPad Prism 5 software (GraphPad Software Inc.).

RESULTS

Establishing a post-menopausal osteoporosis model 
and validating its efficacy 
To establish a post-menopausal osteoporosis mouse model, 
the bilateral ovaries were surgically removed before OTPL. As 
show in Fig. 2, BMD, BMC, and BV gradually decreased regard-
less of the measured sites (body, femur, and lumbar vertebrae) 
4 weeks after OVX. Based on our results, a period of 8 weeks af-
ter bilateral OVX was chosen for auto-transplantation of cryo-
preserved whole ovaries. 

Recovery of bone health by auto-transplantation of 
vitrified-warmed ovarian tissue 
BMD, BMC, and BV values in the body, femur, and lumbar ver-
tebrae decreased in OVX-induced osteoporosis model animals. 
Four weeks after transplantation, all values increased; however, 
these values were still lower than those of the sham control 
group, as shown in Fig. 3. Fig. 3A-C show that the body BMD, 
femoral BMD, and lumbar vertebrae BMD values significantly 
decreased after removal of the ovaries; the body BMD recov-
ered after ovary transplantation, regardless of the number of 
grafts. However, BMD values at the femoral and lumbar verte-
brae were slightly higher than those after OVX. Regarding BMC, 
the OTPL 1 and OTPL 2 groups showed higher body, femoral, 
and lumbar vertebral values than those achieved with OVX, al-
though there were no significant differences, as shown in Fig. 
3D-F. Regarding BV, only the OTPL 2 group had a significantly 
increased body BV, compared with the OVX group, although 
there was no significant difference in the femoral and lumbar 
vertebral BV values (Fig. 3G-I). Therefore, we hypothesized that 
ovary-providing environments after transplantation might af-
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fect bone health in postmenopausal osteoporosis patients.

Changes in bone structure imaged by micro-CT
To investigate whether the auto-transplantation process may 
influence the microstructure of the femoral bone, a micro-CT 
analysis was performed. Micro-CT scans showed architectural 
differences between the OVX group and other groups (Fig. 4). 
Bilateral OVX strongly induced porosity in the femoral bone, 
while bone samples collected from the OTPL 1 and OTPL 2 
groups had higher density than those from the other groups at 
4, 8, and 12 weeks later. 

Body weight and fat mass after auto-transplantation 
of ovarian tissue
In addition to bone health, we measured total body weight, in 
addition to absolute and relative fat mass, in model animals, 
which are commonly increased in postmenopausal women. 
Total body weight and fat mass values in the OVX group were 
significantly higher than those in the sham control group; how-
ever, these values were decreased in the OTPL 1 and OTPL 2 
groups, as shown in Fig. 5. 

Alterations in gross appearance, weight, histology, 
and thickness of the uterus
Uterine atrophy is common in post-menopausal women. There-
fore, the uterus underwent gross examination and histological 
analysis. In Fig. 6A, the uteri in OVX mice were dramatically al-
tered, whereas those in the OTPL 1 and 2 groups interestingly 
reverted to normal shape. These changes were confirmed when 
the uteri were weighed, as shown in Fig. 6B. Additionally, 
uterine histology showed severe atrophy and shrinkage in the 
OVX group, whereas these were surprisingly restored in both 
OTPL groups, regardless of the number of grafts (Fig. 6C and D).

DISCUSSION

In this study, we aimed to confirm the possibility of using tHRT 

as an ideal therapeutic method to treat and prevent post-meno-
pausal symptoms and effects, including osteoporosis, changes 
in body composition, and uterine atrophy. BMD, BMC, and 
BV values were increased in the OTPL 1 and OTPL 2 groups af-
ter auto-transplantation, regardless of the sites assessed (body, 
femur, and lumbar vertebrae). Interestingly, uterine charac-
teristics, including gross appearance, weight, and endometrial 
thickness, were dramatically restored in both the OTPL 1 and 
OTPL 2 groups, indicating that auto-transplanted ovaries may 
restore endocrine function without any complications, which 
normally occurs with pHRT. Regimens with high doses of es-
trogen (50 μg E2±P4) result in an abnormal uterus, which is con-
sistent with concerns in human patients on estrogen therapy.5

In the present study, BMD, BMC, and BV values, as well as 
uterine status, were surprisingly comparable between the OTPL 
1 and OTPL 2 groups, indicating that the number of ovaries 
transplanted into ovariectomized mice did not affect the re-
covery of bone health via the restoration of the endocrine sys-
tem. These results suggest that treatment is not dependent on 
the dose of hormones nor amount of tissue transplanted, as the 
minimum dose and amount, respectively, are sufficient for 
treatment. In clinical practice, repeated transplantation with 
small amounts of tissue could be better as a long-term treat-
ment option. 

Silva, et al.12 demonstrated that cryopreserved OTPL re-
stored bone parameters, including median tibial cortical thick-
ness and trabecular mean, in a rat model. In a previous study, 
ovaries in rats were bilaterally removed, vitrified, and reim-
planted a week or month after OVX. This time period after OVX 
was apparently not sufficient to evaluate post-menopausal os-
teoporosis in rodent models. In our study, we observed that 
bone-related bioimaging indexes (BMD, BMC, and BV) gradu-
ally decreased and did not recover even after 20 weeks in ovari-
ectomized mice. The OVX group showed a remarkable differ-
ence in BMD, BMC, and BV values, compared with the sham 
control, regardless of the time period. Therefore, we determined 
that a period of 8 weeks after OVX is suitable for investigating 
the effects of tHRT.
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In this study, we showed that the uterus and bone mass re-
covered to pre-OVX levels instead of ovary-related hormones 
[follicle stimulating hormone (FSH), luteinizing hormone, es-
trogen, and progesterone]. Our previous studies have demon-
strated that serum FSH dramatically decreases after OTPL and 
induces the resumption of folliculogenesis in grafts.13 We ob-
served that estrogen is produced by in vitro folliculogenesis.14 
In addition to our study, many case studies have suggested 
that the transplanted ovary is the source of endogenous hor-
mones as well as preserves fertility.15-17 We did not measure se-
rum estradiol levels in mice because we focused on the long-
term effects of tHRT on not only hormone production but also 
on bone health. Based on our findings and those of previous 
studies, we assumed that the ovarian follicles in the graft may 
resume folliculogenesis and improve bone health via ovarian 
hormone production.

The most striking advantage of tHRT is graft longevity. An-
dersen, et al.18 demonstrated that ovarian cortical strips, not 
whole tissue, have sustained function for 7 years in humans re-
gardless of the presence or absence of cryopreservation. Kim9 
also showed that endocrine function after a second transplanta-
tion was sustained for 7 years. Jensen, et al.19 demonstrated that 
53 transplants maintained endocrine function up to 10 years. 
The cryopreservation of ovarian tissue can be performed to ex-
tend the longevity of grafts, resulting in an ideal postponed 
menopause in women.20,21 As noted, the prevention of post-
menopausal symptoms is vital in an aging society. In contrast, 
delayed menopause may result in unexpected symptoms, in-
cluding estrogen-sensitive breast and uterine endometrial can-
cers; therefore, further studies related to tHRT are required. 

tHRT has limitations, including safety issues, due to the high 
risk of ovarian cancer recurrence and other complications after 
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amination on the uterus. Grid size was about 1 cm×1 cm. (B) Uterine weight was measured and divided into body weight. (C) A fixed uterine sample 
was embedded in a paraffin block and sectioned into 4-μm layers. The slides were stained with hematoxylin and eosin. (D) Endometrial thickness 
was measured without the myometrium. The averages values of 9 to 10 mice per group were calculated. The means of the OVX groups (red) were 
compared with those of the sham group (black), OTPL 1 (blue), OTPL 2 (green) groups (*p<0.05, **p<0.01, ***p<0.001). OVX, ovariectomy; OTPL, ovarian 
tissue transplantation.
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reimplantation, including leukemia, which can spread to the 
ovary.22 Auto-transplantation of ovarian tissue for tHRT is inap-
plicable in patients with premature ovarian insufficiency be-
cause the ovary is non-functional. Particularly, BRCA mutation 
carriers will be at risk because there is still a lack of guidelines 
or expert consensus on OTPL in this population.23,24 Although 
tHRT has several challenges regarding fertility preservation, it 
still merits consideration for endocrine restoration. 

To replace pHRT, many regenerative medicine approaches 
with improved safety profiles have been published, including 
the use of cell-based encapsulations.5 The ovarian follicle, a 
basic functional unit, has also been utilized to restore ovarian 
function, including sex steroid hormone production, in experi-
mental animals.25,26 Sittadjody, et al.5 reported a novel cell-
based HRT (cHRT) with fabricated constructs. They postulated 
that cHRT offers an attractive alternative to traditional pHRT. 
Similarly, Guo, et al.27 and Liu, et al.28 investigated the use of 
microencapsulated ovarian cells, which secreted estradiol and 
progesterone; these secretions may result in the prevention 
of osteoporosis in ovariectomized mice. Krotz, et al.29 seeded 
three-dimensional complexes of granulosa cells and theca cells 
into micro-molded gels; this artificial ovary produced hormones 
in response to gonadotropins. Currently, mesenchymal stem 
cell-based therapy has been widely investigated considering its 
roles in osteoporosis, which include the genetic and transcrip-
tional regulation involved in the pathogenesis of osteoporosis 
and regulation of signaling pathways associated with osteo-
porosis.30 cHRT is thought to be in the experimental phase, not 
clinical.31,32 In this respect, tHRT has already been clinically ap-
plied and demonstrated its restorative abilities in endocrine 
function.33-35

The present study has a few limitations. First, we did not as-
sess serum estradiol levels after ovarian transplantation or the 
histology of the transplanted ovary, which can prove the di-
rect recovery of ovarian function. However, we confirmed the 
hormonal effects of ovarian transplantation via increases in 
uterine weight and endometrial thickness, as well as confirm-
ing changes in body fat mass. Second, bone turnover markers 
and microarchitecture analysis data were missing, which could 
have helped us understand the changes in bone metabolism 
and strength. DXA data alone were utilized to check the recov-
ery of bone density after ovarian transplantation because the 
purpose of this study was to demonstrate the possibility of tHRT 
as a therapeutic modality for post-menopausal osteoporosis. 
Third, we did not include a pHRT group in this study. Thus, we 
could not directly compare the efficacies of tHRT and pHRT. 
Fourth, we did not evaluate estrogen-related side effects of tHRT. 
Prior to clinical application, tHRT-associated safety issues, in-
cluding breast cancer and thrombosis, should have been evalu-
ated. Finally, this was an animal study, and further studies in 
human subjects are needed to confirm the role of ovarian trans-
plantation as an alternative for pHRT.

Based on these findings, we suggest that tHRT could be an 

applicable therapeutic modality not only for fertility restoration 
but also for menopausal hormone therapy in mice. For tHRT 
application in humans, clinical studies with long-term follow-
up are required to investigate the efficacy and safety of tHRT.
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