logo

Research >Drug delivery & Bioimaging

Drug delivery & Bioimaging



¢º Polymeric Carrier


Biodegradable polymer systems encapsulate the drugs of interest and release it with the required dose and kinetics in vivo. We investigate biomaterials that are multifunctional, dynamic, and externally triggered on demand to apply for regenerative medicine. We are exploring this question in a variety of systems including stem cell differentiation, angiogenesis, and cancer malignancy, with different cell lines and primary cells.br


ÇÊ¿äÇÑ ¾à¹°À» ĸ½¶È­ÇÏ¿© ÀûÀçÀû¼Ò¿¡¼­ ºÐºñÇÏ´Â »ýºÐÇؼº °íºÐÀÚ¸¦ ÀÌ¿ëÇÏ¿© ȯÀڵ鿡°Ô Àû¿ë°¡´É¼ºÀ» ³ôÀÌ°íÀÚ ÇÑ´Ù. °í±â´É °íºÐÀڽýºÅÛÀ» ±¸ÇöÇÏ¿© Àç»ýÀÇÇп¡ È°¿ëÇÒ ¼ö ÀÖ´Â °íºÐÀڽýºÅÛÀ» ¸ñÇ¥·Î Áٱ⼼Æ÷ºÐÈ­, Ç÷°üÀç»ý, ¾ÏÄ¡·á µîÀÇ ¿©·¯ ºÐ¾ß¿¡¼­ À̸¦ ¿¬±¸ÇÏ°íÀÖ´Ù.

Keywords: PEG-PLGA, gasotransmitter, angiogenesis, bio-compatible polymeric carrier






¢º Nanoparticles based cancer targeting


We apply multidisciplinary strategies to investigate the mechanisms by which chemical and physical cues and the mechanics of the cellular microenvironment are sensed and how these are converted into biochemical signals. Among them, nanoparticles are one of the most promising tools to demonstrate various effects. We fabricated cancer-targeting nanoparticles by fine-tuning physicochemical properties and then investigated applicability to cancer therapy by confirming direct cell death of cancer cells by the particles alone. We confirmed it inhibits tumor growth through the regulatory system, and therefore we expect to have our nanoparticles the therapeutic potential of cancer in the future.


º» ¿¬±¸½Ç¿¡¼­´Â À¶ÇÕ °úÇÐÀÇ ¿©·¯ ±â¼úÀ» ÀÌ¿ëÇØ È­ÇÐÀû, ¹°¸®Àû ½ÅÈ£·Î ¼¼Æ÷ÀÇ ¸¶ÀÌÅ©·Îȯ°æ¿¡¼­ÀÇ Àü´Þ°úÁ¤°ú À̸¦ »ýÈ­ÇÐÀû ½ÅÈ£·Î º¯ÀÌÇÏ´Â ¹æ¹ýÀ» ¿¬±¸ÇÏ°í ÀÖ´Ù. ±× Áß¿¡¼­µµ ¾Ï¼¼Æ÷¸¸ ƯÀÌÀûÀ¸·Î Ç¥ÀûÇÏ´Â ³ª³ëÀÔÀÚ¸¦ ¸¸µé¾î Á÷Á¢ÀûÀÎ »ç¸êÀ» È®ÀÎÇÏ¿´´Ù. º» ¿¬±¸½Ç¿¡¼­ °³¹ßÇÑ ³ª³ëÀÔÀÚ°¡ ¾ÕÀ¸·Î ¹Ì·¡ ¾ÏÄ¡·á ¿¬±¸¿¡ Å« ¿ªÇÒÀ» ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ë ÇÑ´Ù.

Keywords: nanoparticle, ferroptosis, cancer targeting, cancer therapy






¢º Natural polymer based nanobiomaterials


The most abundant resources on earth are natural polymers. Although much has been done in using natural polymers such as cellulose and starch, progress to using them as biomaterials stand far from the reach. Our group focuses on biomaterials research based on natural polymers such as Cellulose, Starch, and Chitosan into nanoparticles, nanofibers, and scaffolds. We use a variety of scientific approaches to make natural polymers novel and potent biomaterials.


¼¿·ê·Î¿À½º, ³ì¸», Å°Åä»ê µî Áö±¸»ó °¡Àå dzºÎÇÑ ÀÚ¿øÀΠõ¿¬°íºÐÀÚ¸¦ ÀÌ¿ëÇÏ¿© ³ª³ë»ýüÀç·á·ÎÀÇ ¿¬±¸¸¦ ÁøÇàÇÑ´Ù. º» ¿¬±¸½Ç¿¡¼­´Â dzºÎÇϸç ģȯ°æÀûÀÌ°í »ýü ÀûÇÕÇÑ Ãµ¿¬°íºÐÀÚµéÀ» ÀÌ¿ëÇÏ¿© ½ºÄ³Æúµå, ¸âºê·¹ÀÎ, ³ª³ëÆÄƼŬ µîÀ¸·ÎÀÇ ¿¬±¸¸¦ ¼öÇàÇϸç À̸¦ ÅëÇØ Á¶Á÷ Àç»ý, ¹Ì¿ë, ¾à¹° Àü´Þ µîÀÇ ´Ù¾çÇÑ ¹æÇâÀ¸·ÎÀÇ ÀÌ¿ëÀ» ¸ñÇ¥·Î ÇÑ´Ù.

Keywords: Natural polymer, cellulose, starch, chitosan, bio-compatible, Eco-friendly






¢º Blood-brain barrier in vitro model


The blood-brain barrier(BBB), the unique brain characteristics, is mediated by the interaction of multiple cell types such as cerebral endothelial cells, astrocytes, and pericytes as well as the physiological environment. The BBB regulates molecular transport between blood and neural tissue to keep homeostasis in the brain. However, cerebral therapeutic agent development remains challenging because of BBB¡¯s drug resistance. As a result, the in vivo-like BBB models have been established for a drug screening to replace animal testing. Our BBB model is based on multicellular co-culture in the fluidic system to replicate our micro-environment more realistically. Consequently, this model is believed to be a robust and reliable platform for screening the effect of neurological drugs in the future.


Ç÷¾× ³ú °ü¹®(BBB)Àº ³úÀÇ ±¸Á¶Àû Ư¡À¸·Î ¿©·¯ ¼¼Æ÷µé°£ÀÇ »óÈ£ÀÛ¿ëÀ¸·Î Á¶ÀýµÈ´Ù. BBB´Â Ç÷¾×¿¡¼­ ³úÁ¶Á÷À¸·ÎÀÇ ¹°Áú À̵¿À» Á¶ÀýÇÏ°í ³úÀÇ Ç×»ó¼ºÀ» À¯ÁöÇÏÁö¸¸, ¾à¹°Àü´Þ¿¡ °üÇؼ­´Â BBB°¡ Àå¾Ö°¡ µÇ°í ÀÖ´Ù. º» ¿¬±¸½Ç¿¡¼­´Â In vivo ¿Í ºñ½ÁÇÑ in vitro BBB ¸ðµ¨À» ÅëÇØ µ¿¹°½ÇÇèÀ» ´ëüÇÏ¿© ¾à¹° ½ºÅ©¸®´×À» °¡´ÉÄÉ ÇÏ´Â ¹æ¹ýÀ» ¿¬±¸ÇÏ°í ÀÖ´Ù. ¿¬±¸½Ç¿¡¼­ Á¦½ÃÇÑ ¸ðµ¨Àº ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ ½Ã½ºÅÛ, °ø¹è¾ç ½Ã½ºÅÛÀ» ÅëÇØ ³úÀÇ ¸¶ÀÌÅ©·Îȯ°æÀ» ´õ Çö½ÇÀûÀ¸·Î ¸ð»çÇÒ ¼ö ÀÖ´Ù. À̸¦ ÅëÇØ ¹Ì·¡ ³ú½Å°æÇ¥Àû ¾à¹° ½ºÅ©¸®´×¿¡ ÀûÇÕÇÑ Ç÷§ÆûÀ» ¸¸µé ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëÇÑ´Ù.

Keywords: microfluidics, fluidic co-culture model, BBB invitro model, drug screening, BBB opening